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Particle dynamics in storage rings with barrier rf systems

S. Y. Lee* and K. Y. Ng
Department of Accelerator Physics, Fermilab, Box 500, Batavia, Illinois 60510

~Received 22 October 1996!

The stability of particle motion in a barrier rf system is studied. Parametric resonance strength functions for
the barrier rf system with rf phase and voltage modulations are derived. We find that higher order parametric
resonances of the barrier rf system are important. Tolerance of the rf phase modulational errors in the barrier
rf system in the Fermilab Recycler, a cooling storage ring to recycle unused antiprotons from the Tevatron and
to store newly produced cooled antiprotons, is analyzed. A constraint on the rate of bunch compression
utilizing the barrier rf system is derived.@S1063-651X~97!15905-0#

PACS number~s!: 29.20.Dh, 03.20.1i, 05.45.1b
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I. INTRODUCTION

Bunch beam manipulations have become a routine op
tional practice in antiproton production, beam coalescen
multiturn injection, accumulation, etc. The demand of high
beam brightness in storage rings and higher luminosity
high energy colliders requires intricate beam manipulatio
In particular, a flattened rf wave form has been commo
employed to shape the bunch distribution in order to allev
space charge problems in low energy proton synchrotro
and to increase the tune spread in electron storage rings

For achieving high luminosity in the Fermilab TeV co
lider Tevatron, a machine called the Recycler has been
posed to recycle unused antiprotons from the Tevatron@1#.
The recycled antiprotons can be cooled by stochastic coo
or electron cooling to attain a high phase space density
the same time, the Recycler also accumulates newly
duced, cooled antiprotons from the antiproton Accumula
To maintain the antiproton bunch structure, a barrier rf wa
form @2# is generated to confine the beam bunch, and sh
the bunch distribution waiting for the next collider refill. Th
required bunch length and the momentum spread of the b
can be adjusted more easily by gymnastics with barrie
waves than the usual rf cavities.

The barrier rf wave is normally generated by a solid st
power amplifier, which has intrinsic wide bandwidth chara
teristics. An arbitrary voltage wave form can be genera
across a wideband cavity gap. Figure 1 shows some pos
barrier rf waves with half sines and triangular and squ
function forms. These wave forms are characterized b
voltage amplitudeV(t), a pulse durationT1, a pulse gap
T2 between the positive and negative voltage pulses, an
integrated pulse strength*V(t)dt. For example, the inte
grated pulse strength for a square wave form isV0T1. The rf
wave form is applied to a wideband cavity with a frequen
h f rev, whereh is an integer,f rev is the revolution frequency
of synchronous particles, whose revolution frequency s
chronize with the rf frequency. The effect on the beam
determined mainly by the integrated voltage of the rf pul
Acceleration or deceleration of the beam can be achieve

*Permanent address: Department of Physics, Indiana Univer
Bloomington, IN 47405.
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employing a biased voltage wave on top of the bun
confining positive and negative voltage pulses.

Most of the time, orbiting particles see no cavity field
passing through the cavity gap. When a particle travels in
time range where the rf voltage is not zero, the energy of
particle can increase or decrease depending on the sign o
voltage it sees. In this way, the accelerator is divided i
stable and unstable regions. Thus the wide bandwidth
wave can create barrier bucket to confine orbiting particl

Because solid state amplifiers are normally low pow
devices, the voltage across the rf gap is usually limited. T
resulting bunch area may nearly fill thebucket area, which is
the maximum stable area that can normally confine the be
particles. Since the bucket is almost full, timing jitter in th
rf wave may cause problems in beam stability. In particu
when the frequency spectrum of these perturbations is ne
harmonic of the synchrotron frequency, beam particles
be coherently excited to escape the bucket@3–8#.

This paper studies the beam dynamics associated wi
barrier bucket. We analyze the stability of the particle m
tion in a barrier bucket under the perturbative force of
phase and voltage modulations. Furthermore, if the dip

ty,

FIG. 1. Possible wave forms for the barrier bucket. The bar
rf wave is characterized by a voltage heightV0, a pulse widthT1,
and a pulse gapT2. Below the transition energy withh,0, par-
ticles are confined within the positive and negative pulse regio
Above the transition energy, the sign of the voltage wave should
reversed.
5992 © 1997 The American Physical Society
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field in the accelerator is modulated, the resulting circumf
ence of the orbiting particles will be changed as well. T
results in a synchrotron phase dependence on the modul
dipole field error, i.e., a kind of synchrobetatron coupli
@4,5#. Section II gives fundamental properties of particle m
tion in the barrier bucket. Section III analyzes the stability
the barrier bucket in the presence of rf phase modulat
Section IV analyzes the effects of rf voltage modulatio
Section V discusses the tolerance of the barrier rf cavity
the Recycler, the tolerance of the orbit stability due to s
chrobetatron coupling, and the rate of bunch compress
with the preservation of the bunch area. The conclusion
given in Sec. VI.

II. PROPERTIES OF THE BARRIER BUCKET

The fractional change of the orbiting timeDT/T0 for a
particle with an energy deviationDE is given by

DT

T0
5h

DE

b2E0
, ~2.1!

whereh is the phase slip factor, andbc andE0 are, respec-
tively, the speed and energy of the synchronous particle,
T0 its revolution period. Without loss of generality, we co
sider synchrotron motion withh,0 in this paper. For
h.0, the wave form of the barrier bucket is reversed. L
2t be the relative time between an off-momentum parti
e
t l
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and the synchronous particle at the center of the bucket.
equation of motion for the phase space coordinatet is

dt

dt
52h

DE

b2E0
, ~2.2!

Passing through a barrier wave, the particle gains energ
the rate of

d~DE!

dt
5
eV~t!

T0
. ~2.3!

Equations~2.2! and ~2.3! constitute the equations of motio
of a particle in a barrier rf wave.

Since the effect of the barrier rf wave on particle moti
depends essentially on the integrated rf voltage wave~see
Appendix A!, we consider only the square wave forms wi
voltage heights6V0 and a pulse widthT1 in time, separated
by a gap ofT2. At a proper passage time, the particle ga
or loses equal amount of energyeV0, i.e.,
d(DE)/dt5eV0 /T0 every turn. The number of cavity pas
sages before the particle loses all its maximum off-ene
valueDÊ is

N5
uDEuˆ

eV0
. ~2.4!

Thus the phase space trajectory for a particle with a ma
mum off-energyDÊ is given by
~DE!25H ~DÊ!2 if utu<
T2
2

~DÊ!22S utu2
T2
2 Dv0b

2E0eV0
puhu

if
T2
2

<utu<
T2
2

1T1 ,

~2.5!
m

ven

-
a
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to
wherev052p f rev is the angular revolution frequency of th
beam. The phase space ellipse is composed of a straigh
in the rf gap region and a parabola in the square rf w
region. The phase space area of the invariant phase s
ellipse is

A52T2DÊ1
8puhu

3v0b
2E0eV0

~DÊ!3. ~2.6!

The maximum energy deviation or the barrier height t
the barrier rf wave can sustain is given by

DEb5S eV0T1T0

2b2E0

uhu D 1/2, ~2.7!

whereT1 is the pulse width of the rf voltage wave, andT0 is
the revolution period of the beam. The bucket height
pends onV0T1, which is the integrated rf voltage streng
*V(t)dt. The synchrotron period is given by

Ts52
T2
uhuS b2E0

uDÊu
D 14

uDÊu
eV0

T0 ~2.8!
ine
e
ace

t

-

for a particle inside the bucket. The mathematical minimu
synchrotron period of Eq.~2.8! is given by

Ts,min5S 32T0T2b2E0

uhueV0
D 1/2, ~2.9!

and the corresponding maximum synchrotron tune is gi
by

ns,max5S T0T2 uhueV0
32b2E0

D 1/2. ~2.10!

Note here thatpT0 /(16T2) plays the role of harmonic num
ber ‘‘h’’ of a regular rf system. The synchrotron tune is
function of the off-energy parameterDÊ given by

ns54ns,maxS T1T2D
1/2 DÊ

DEb
S 114F DÊ

DEb
G2T1
T2

D 21

. ~2.11!

Note that when the rf pulse gap width decreases
T2 /T1,4, the synchrotron tune becomes peaked at an
plitude within the bucket height. This feature is similar
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that of a double rf system@7#. Figure 2 showsns vsDE with
the Fermilab Recycler’s parametersE058.9 GeV,
gT520.7, f rev589.8 kHz, T150.5 ms, V052 kV, and
T2 /T151, 2, 4, and 8 respectively. For exampl
ns,max53.731025 for T25T1, i.e., the synchrotron fre
quency is 3.3 Hz.

The Hamiltonian for the phase space coordina
(t,DE) is given by

H05
h

2b2E0
~DE!21

v0eV0T1
2p

f 0~t,T1 ,T2!, ~2.12!

where

f 0~t,T1 ,T2!5
1

T1
F S t1T11

T2
2 D uS t1T11

T2
2 D

2S t1
T2
2 D uS t1

T2
2 D2S t2

T2
2 D uS t2

T2
2 D

1S t2T12
T2
2 D uS t2T12

T2
2 D G21. ~2.13!

Here u(x) is the standard step function withu(x)51 for
x.0 andu(x)50 for x,0. The top plot of Fig. 3 shows a
schematic drawing of thef 0 function.

For constantsT1, T2, andV0, the HamiltonianH0 is a
constant of motion. The action of a Hamiltonian torus
given by

J5
1

2p R DE dt

5
1

2pS v0b
2E0eV0

puhu D 1/2 R AW1 f 0~t,T1 ,T2!dt.

~2.14!

FIG. 2. The synchrotron tune vs the off-energy parameterDE.
The parameters used in this plot areE058.9 GeV, f rev589.8 kHz,
V052 kV, g

T
520.7, andT150.5 ms. Note that ifT2.4T1, the

synchrotron tune is a monotonic function ofDE. On the other hand
if T2,4T1, the synchrotron tune is peaked at an off-energyDE
smaller than the bucket heightDEb .
s

The parameterW with a dimension of time is related to th
Hamiltonian value by

H052
v0eV0
2p

W5
h

2b2E0
~DÊ!2. ~2.15!

For a given Hamiltonian torus,W has the physical meanin
that it is equal to the maximum phase excursionutu in the rf
wave region. ThereforeW50 corresponds to an on
momentum particle, andW5T1 is associated with particle
on the bucket boundary.

The action for a particle torus inside the bucket is giv
by

J5
1

2pS v0b
2E0eV0

puhu D 1/2F2T2AW1
8

3
W3/2G

5
1

2p F2T21 8

3
WGDÊ. ~2.16!

The bucket area is related to the maximum action w
W5T1, i.e.,

B52p Ĵ5~2T21
8
3 T1!DEb . ~2.17!

Again, the bucket area depends only on the integrate
voltage strength*V(t)dt5V0T1.

Canonical transformation from the phase space coo
nates (t,DE) to the action-angle variable can be achieved
using the generating function

F2~J,t!5E
2 t̂

t

DEdt, ~2.18!

wheret̂5W1(T2/2). The angle variablec is given by

c5
]F2

]J
5

pAW
T214WE

2 t̂

t dt

AW1 f 0
. ~2.19!

The integral can be evaluated easily to obtain

FIG. 3. Schematic drawing of the form factorsf 0, f 1, f 2, and
f 3 used in this paper for the barrier rf system.
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cc5
2pW

T214W
, cs5

pT2
T214W

~2.21!

are the synchrotron phase advance for a half orbit in th
wave region and the synchrotron phase advance in the re
between two rf pulses respectively. Note that 2cc1cs5p
for one half of the synchrotron orbit; and the motion of
stable particle orbit in the barrier bucket withh,0 is clock-
wise. We choose the convention ofċ.0 corresponding to a
clockwise motion in synchrotron phase space.

III. rf PHASE MODULATIONS

Noise in the rf system and ground vibration are inher
in all realistic storage rings. The timing jitter of the rf puls
introduces rf phase modulation, and the variation of the
voltage, gives rise to amplitude modulation. Furthermo
ground vibration can result in orbit length modulation, whi
leads to rf phase modulation. This section studies the eff
of rf phase errors on stability of the barrier rf system. P
sible forms of rf phase error are listed as follows:~1! Breath-
ing rf phase modulation withT2→T21a1cosvmt, ~2! rf
phase modulation witht→t1a2cosvmt, ~3! rf pulse width
modulation withT1→T11a3cosvmt.

A. Breathing rf phase modulation

For case~1!, the Hamiltonian can be expressed as

H5H01
a1
2T1

eV0T1
T0

f 1~t,T1 ,T2!cosvmt1•••, ~3.1!

where higher order perturbation terms involvingd function
are neglected, and

f 1~t,T1 ,T2!5uS t1T11
T2
2 D2uS t1

T2
2 D1uS t2

T2
2 D
rf
on

t

rf
,

ts
-

2uS t2T12
T2
2 D ~3.2!

is also schematically shown in Fig. 3. Note that the effect
perturbation is proportional toa1 /T1. We expand the func-
tion f 1 in action-angle variables, i.e.,

f 1~t,T1 ,T2!5(
2`

`

gm~J!eimc, ~3.3!

where

gm5
1

2pE0
2p

f 1~t,T1 ,T2!e
2 imcdc. ~3.4!

Since f 1 is a real even function oft, all odd harmonics
vanish withg2m5gm* . The strength functiongm is given by

gm5H 0 if m5odd

2

mp
sinmcc if m5even,

~3.5!

wherecc is the phase advance of synchrotron motion acr
the rf wave region given by Eq.~2.21!. Note that the reso-
nance strength function decreases slowly with the m
numberm. For a largerT2 parameter, the resonance streng
function also becomes smaller. The resonance strength f
tion satisfies the sum rule theorem

(
n51

`

ug2n~J!u25
2WT2

~T214W!2
. ~3.6!

The sum rule vanishes for on-momentum particles w
W50. SinceW<T1, the sum rule is maximum at orbits wit
W5T2/4 provided thatT2<4T1. For barrier rf systems with
T2.4T1, the sum rule is a monotonic increasing function
the synchrotron amplitude.

The perturbation term in the Hamiltonian becomes
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DH5
2a1WeV0

T0~T214W!
cosvmt1 (

n51

`
a1eV0
2npT0

sin~2ncc!

3@cos~2nc1vmt !1cos~2nc2vmt !#. ~3.7!

Note here that when the modulation frequency is equal to
even harmonic of the synchrotron frequency, the rf ph
modulation can coherently perturb particle motion. Figure
shows the Poincare´ surface of section@9# for a particle with
a1 /T150.05, T2 /T152, and a modulation frequenc
vm /vs,max51.95, wherevs,max5v0ns,max is the maximum
angular synchrotron frequency of the rf system. Note that
2:1 parametric resonance plays an important role in de
mining the orbit stability, where orbits outside the last tor
shown in Fig. 4 are unstable.

To estimate the tolerance of the rf phase breathing mo
lation, we calculate the maximum stable bunch area of th
system. We randomly and uniformly populate 1000 partic
inside the bucket area and track the beam bunch for m
than 50 synchrotron periods. The stable phase space are~in
units of the bucket area! is defined as the ratio between th
number of survival particles and the number of initial pa
ticles. Figure 5 shows the maximum stable bunch area~in
ratio to the bucket area! vs the rf phase modulation frequenc
~in ratio to the maximum synchrotron frequency! with
a150.10T1, T2 /T154, where we haveg450, g850, etc.
for the particle orbit on the bucket boundary withW5T1.
This fact is reflected in a weak 4:1 parametric resona
shown in Fig. 5. Because the driving amplitude is large
this example, the 8:1 and 12:1 resonances are found not
small.

In general, a 5% timing jitter gives a stable bunch area
about 95% of the bucket area, provided that parametric re
nances are avoided. On the other hand, if the modula
frequency is near a synchrotron sideband, the stable p
space area becomes very small. Figure 6 shows the s
phase space area~in ratio to the bucket area! vs the modula-
tion frequency~in ratio to the maximum synchrotron fre
quency! with T25T1 and a1 /T150.04,0.08,. . . ,0.20 in

FIG. 4. The Poincare´ surface of section atvm51.95vs,max. The
2:1 parametric resonance generated by the rf breathing phase m
lation with a1 /T150.05 andT2 /T152. Note that the last torus is
about 60% of the bucket height shown as solid lines. Orbits out
the last torus are not bounded by the barrier bucket.
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steps of 0.04. In order to eliminate high order modes a
retain about 90% of stable phase space area near the
parametric resonance, the modulation amplitude must
a1 /T1<0.005.

B. Phase modulation of the rf wave

If the entire rf wave timing and/or the particle orbit leng
are modulated, the effect gives rise to a modulation of
phase variablet. In this case, the Hamiltonian can be e
pressed as

H5H01
a2
T1

eV0T1
T0

f 2~t,T1 ,T2!cosvmt1•••, ~3.8!

du-

e

FIG. 5. The stable rf bunch area~in ratio to the bucket area! is
plotted as a function of the rf breathing phase modulation freque
~in ratio to the maximum rf frequency!. The modulation amplitude
is 5% of the rf pulse width, i.e.,a1 /T150.05. The ratio between the
rf pulse gap and the pulse width isT2 /T154. In this example, a
smaller resonance excitation at 4:1, 8:1, . . . parametric resona
is due to the vanishingg4 ,g8 , . . . on the barrier orbits.

FIG. 6. The stable phase space area~in units of the bucket area!
vs the modulation frequency~in units of the maximum synchrotron
frequency! for the breathing rf phase modulation withT25T1 and
a1 /T150.04,0.08,. . . ,0.20.
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where higher order perturbation terms involvingd function
are neglected, and

f 2~t,T1 ,T2!5uS t1T11
T2
2 D2uS t1

T2
2 D2uS t2

T2
2 D

1uS t2T12
T2
2 D ~3.9!

is an odd function oft shown in Fig. 3. The effective phas
modulation strength is proportional toa2 /T1. We expand the
function f 2 in action-angle variables, i.e.,

f 2~t,T1 ,T2!5(
2`

`

hm~J!eimc. ~3.10!

Since f 2 is an odd function oft, we obtain

hm5H 0 if m5even

2

mp
sinmcc if m5odd.

~3.11!

The resonance strength function satisfies the sum rule t
rem

(
n51

`

uh2n11~J!u25
2W

T214W
. ~3.12!

The sum rule strength for the rf phase modulation is sligh
larger than that of rf breathing phase modulation of Eq.~3.6!.
This means that the rf phase modulation can cause m
particle orbit distortion than the rf breathing phase modu
tion. The sum rule is a monotonic function of the synch
tron amplitude. At the maximum synchrotron amplitude w
W5T1, the sum rule decreases with increasingT2 /T1.

The perturbation term in the Hamiltonian becomes

DH5 (
n51

`
a2eV0

~2n11!pT0
sin„~2n11!cc…

3@cos„~2n11!c1vmt…1cos„~2n11!c2vmt…#

~3.13!

When the modulation frequency is equal to an odd harmo
of the synchrotron frequency, particle motion will b
strongly perturbed. The resulting effects on particle mot
are similar to that discussed in Sec. III A. Figure 7 shows
stable phase space area~in units of the bucket area! vs the
modulation frequency~in units of the maximum synchrotro
frequency! for a2 /T150.10. The reduction of stable bunc
area by the excitation of odd order modes is clearly visib

Figure 8 shows the stable phase space area near th
parametric resonance fora2 /T150.01,0.02,. . . ,0.10, re-
spectively. In comparison with the result of Fig. 6, the loss
phase space area due to the shaking phase modulati
more severe than that of breathing phase modulation.

The top plot of Fig. 9 shows the stable phase area~in units
of the bucket area! as a function of the breathing phas
modulation amplitude (a1 /T1) at the 2:1 parametric reso
nance. The bottom plot shows the stable phase space ar
the shaking phase modulation amplitudea2 /T1 at the 1:1
o-

y

re
-
-

ic
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e

.
1:1

f
is

vs

parametric resonance. The circles~connected by a solid line!
and rectangles are obtained from the parametersT2 /T151
and 4, respectively. Thus our estimated tolerable ph
modulation amplitude isa2 /T1<2.531023 in order to
eliminate higher order modes and to retain a stable ph
space area of about 90% of the bucket area at the 1:1 p
metric resonance. The cusp in the bottom plot of Fig. 9 ari
from the fact that the synchrotron tune is peaked at a s
chrotron amplitude inside the bucket forT2 /T1,4 ~see Fig.
2!.

C. rf pulse width modulation

The Hamiltonian for the rf pulse width modulation
given by

FIG. 7. The stable rf bunch area~in ratio to the bucket area! is
plotted as a function of the rf shaking phase modulation freque
~in ratio to the maximum rf frequency!. The modulation amplitude
is 5% of rf pulse width, i.e.,a1 /T150.10. The ratio of the rf pulse
gap to the pulse width isT2 /T154.

FIG. 8. The stable phase space area~in units of the bucket
area! near 1:1 parametric resonance due to the rf phase mo
ation for T2 /T154. The modulation frequency is in units of th
maximum rf frequency. The modulation amplitudes a
a2 /T150.01,0.02,. . . ,0.10, respectively.
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H5H01
eV0a3
T0

f 3~t,T1 ,T2!1DH ~2!, ~3.14!

where

f 3~t,T1 ,T2!5FuS t1T11
T2
2 D2uS t2T12

T2
2 D21G ,

~3.15!

DH ~2!5
eV0a3
T0

FdS t1T11
T2
2 D1dS t2T12

T2
2 D G1•••.

~3.16!

Since the resonance strength function off 3 shown in Fig. 3 is
zero within the bucket region, parametric resonance will
be excited by the perturbation. Thus the pulse width mo
lation affects only particles at the bucket boundary witho
any resonance structure. This can be understood from
total energy variation for particle orbit near the top of t
bucket driven by theDH (2) term. It will not affect particles
inside the bucket.

IV. rf VOLTAGE MODULATION

When the rf pulse amplitude is modulated, the Ham
tonian for the particle motion becomes

H5H02
T1eDV

T0
f 0~t,T1 ,T2!, ~4.1!

whereDV is the rf voltage modulation amplitude, and th
function f 0 is given by Eq.~2.13!. We expandf 0 in action-
angle variables, i.e.,

FIG. 9. The stable phase space area~in units of the bucket area!
vs the modulation amplitude at 1:1 parametric resonance for
shaking phase modulation~bottom plot! and 2:1 parametric reso
nance for the breathing phase modulation~top plot!. Circular sym-
bols ~connected with a line! and rectangular symbols are obtain
from the rf parameters withT2 /T151 and 4, respectively. The cus
in the rf phase modulation is due to a peaked characteristic of
synchrotron tune.
t
-
t
he

-

f 0~t,T1 ,T2!5 (
m52`

`

Gm~J!eimc. ~4.2!

Since f 0 is an even function oft, we obtain

Gm~J!5H 0 if m5odd

2~T214W!

m2p2T1
Fcosmcc2

1

mcc
sinmccG

if m5even. ~4.3!

The resonance strength functions satisfy the sum rule th
rem

(
n51

`

uG2nu25
16W3~3T212W!

45T1~T214W!2
. ~4.4!

The effect of rf voltage modulation is concentrated at lo
harmonics of the synchrotron sidebands because term
Gm are proportional tom22 andm23, respectively.

Figure 10 shows the survival bunch area~in ratio to the
bucket area! as a function ofvm /vs,max with DV/V050.05
andT2 /T154. Since the cosine term inG6 ,G10, . . . van-
ishes for particles with the maximum synchrotron amplitu
at the bucket, the effective parametric resonance excitatio
much smaller atvm /vs56,10, . . . shown in Fig. 10. Al-
though the cosine term inG2 is also zero, a large resonanc
strength at the 2:1 resonance arises mainly from the
term.

Figure 11 shows the stable phase space area~in ratio to
the bucket area! vs the modulation frequency~in ratio to the
maximum synchrotron frequency! with T25T1 and
DV/V050.02,0.04,. . . ,0.20. Results of many similar simu
lations show that the tolerable voltage modulation is ab
DV/V0<0.01, in order to attain a minimum of 90% stab
phase space area at the 2:1 parametric resonance.

e

e

FIG. 10. The stable bucket area~in ratio to the bucket area! vs
the rf voltage modulation frequency~in ratio to the maximum syn-
chrotron frequency!. The modulation amplitude is 5% of the rf volt
age amplitude, i.e.,a4 /V050.05. The ratio of the rf pulse gap to th
pulse width isT2 /T154. A small excitation at the 6:1, 10:1, . . . is
due to the vanishing cosine term inG6 ,G10, . . . for synchrotron
orbits at the barrier height.
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V. TOLERANCE FOR APPLICATIONS

Since the barrier rf system can provide much lower vo
age than an ordinary rf cavity system, it is important
evaluate its tolerance in any applications. In the followin
we study an example of the Fermilab Recycler which is
fixed energy synchrotron with kinetic energy 8 GeV, circu
ference 3319.4 m, transition gammag

T
520.7, and a momen

tum aperture of about 1%. The rms energy spread of en
recycled antiprotons is about 2.7 MeV filled up the who
ring. As the beam is cooled, the resulting 95% moment
spread is about 2 MeV. Allowing a factor of 7 in bunc
compression for the newly accumulated antiprotons from
accumulator, the resulting 95% bunch height is 14 MeV. T
bucket height for the Recycler is, according to Eq.~2.7!,

DEb513.5~V0T1@kV ms# !1/2 MeV. ~5.1!

Thus an integrated field strength of about 2 kVms is needed
to manipulate the recycled antiprotons.

In the conceptual design of this low level rf system, b
rier rf waves are generated by digital rf synthesizer@10#.
Since the timing jitter in digital frequency synthesizer
small, rf phase modulation due to hardware is negligib
Furthermore, a typical propagation delay time in digital log
circuits is of the order of 10 ns~see for example Ref.@11#!. If
we assume a typical pulse duration of about 0.5;1 ms and a
pessimistic 5% modulational error in the propagation de
time, the actual timing jitter is expected to be abo
Dt/T1<131023. Comparing with the constraint for 90%
bucket survival derived in Sec. IV, the timing jitter resultin
from the barrier rf wave is negligible even when it is at
parametric resonance.

A. Tolerance of phase modulation resulting
from synchrobetatron coupling

In the following we analyze the tolerance of orbit leng
modulation due to the synchrobetatron coupling. In the lin
approximation, the orbit length change of the orbiting p

FIG. 11. The stable phase space area~in units of the bucket
area! vs the modulation frequency~in units of the maximum syn-
chrotron frequency! for the breathing rf phase modulation wit
T25T1 anda1 /T150.02,0.04,. . . ,0.20.
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r
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ticle due to an angular kick is equal toDxu, whereDx is the
dispersion function, andu is the dipole kick angle. When
low frequency modulational angular kicks are applied to
beam, the resulting orbit length change is the integrated o
variation, i.e.,DC5rDxdu. The resulting timing error in the
rf cavity gap is given by

Dt

T1
5
T0
T1

R Dxdu

2pnmC
, ~5.2!

where C is the circumference of the machine, an
nm5vm /v0 is the modulation tune. Due to the synchrobe
tron coupling, the rf synchronous phase slips in one dir
tion, and accumulates for half of the modulation period b
fore it reverses in the other direction. Because
synchrotron frequency is much smaller than the revolut
frequency, the phase error of each term accumulates.
phase modulation amplitude is enhanced by a fac
v0/2pvm . Using the constraintDt/T1<0.0025 in order to
avoid harmful parametric resonances, the tolerable p
length error is given by

DC5 R Dxdu'2pnsC
Dt

T1

T1
T0

<331025 m ~5.3!

for the Recycler, where parameters used arens'331025

~see Fig. 2!, T1 /T0'0.02, andC53319.4 m. Ground vibra-
tion at the frequency of a few Hz is the most importa
source of the orbit length modulation. Fortunately, grou
vibration is mainly vertical, where the corresponding disp
sion function is small. However, because of the tight co
straint of Eq.~5.3!, an active feedback system, e.g., by usi
a feedback dipole at a high dispersion location, may
needed to eliminate harmful effects of parametric re
nances.

B. Constraint on bunch compression

The Recycler storage ring was proposed to recycle
unused antiprotons from the Fermilab Tevatron. At the e
of a collider run, unused antiprotons can be decelerate
the Tevatron to 150 GeV. Antiprotons can then be tra
ferred and decelerated in the Main-Injector in about n
pulses and injected into the Recycler for accumulation. Af
each injection, the recycled antiproton batch must be co
pressed using the barrier rf wave to make space for the
recycled batch injection as well as the later injection of fre
antiprotons from the Accumulator. The compression r
must be properly determined to eliminate unnecessary
ticle loss and bunch-area increase. Besides the applica
in the antiproton recycling project, the barrier rf wave h
been considered for creating a gap in a coasting beam
multipulse injections. The rate at which particles should
pushed by the barrier rf wave is crucial in order not to blo
up the longitudinal emittance.

Let Ṫ2,0 be the compression rate of the barrier rf wav
The change of energy deviation from the synchronous be
energyE0 after traversing through the barrier rf field regio
is given by
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DÊfinal1DÊinit522uṪ2u
b2E0

uhu
, ~5.4!

whereDÊfinal andDÊinit are the final and initial energy de
viations. It is clear from Eq.~5.4! that the energy deviation
of a particle with

DÊ52uṪ2u
b2E0

uhu
~5.5!

will move at the same speed as the barrier rf wave. T
particle will not be affected by the moving barrier. Ther
fore, in order not to produce empty spaces inside the bea
is necessary for the barrier rf wave to move with a veloc
slower than the drift velocity of particles having the max
mum energy spread of the beamDÊbeam, i.e.,

uṪ2,maxu5
uhu

b2E0
DÊbeam. ~5.6!

It is clear that this result does not depend on the shape o
barrier wave, and it can in fact be used to infer Eq.~5.4!.

Even if this condition of Eq.~5.6! is satisfied, empty
spaces can still exist if the total compression time for p
ticles withDÊbeamdoes not complete full synchrotron per
ods. This is because at the time when the compression s
part of the beam can have an uneven distribution in the ph
space. To minimize this effect, the condition that the inc
mental change of beam energy spread should only be a s
fraction of the total beam spread, i.e.,

d~DÊbeam!!DÊbeam, ~5.7!

where d(DÊbeam) is the increase of energy spread in o
complete synchrotron period. Using Eq.~5.4!, this require-
ment becomes

uṪ2,maxu!
uhu

b2E0
D̂Ebeam, ~5.8!

which supersedes Eq.~5.6!. Again, it is obvious that this
constraint is independent of the shape of the barrier w
pulse. If Eq.~5.8! is satisfied, the phase space area should
nearly conserved during the synchrotron phase space
nipulations. The phase space area conservation property
be proved as follows.

The amount of compressiondT2 in dNsyn synchrotron
periods is given by

dT25
Ṫ2
f syn

dNsyn, ~5.9!

where f syn is the synchrotron frequency. Using the synch
tron tune of Eq.~2.11!, Eqs.~5.4! and~5.9! can be combined
to obtain

dT2
T2

52
dDÊ

DÊ
S 114F DÊ

DEb
G2T1
T2

D . ~5.10!
is

, it

he

-

ps,
se
-
all

e
e
a-
an

-

When the second term in the round bracket of Eq.~5.10! is
small, i.e., a small bunch or a smallT1 /T2 approximation,
the equation can be integrated to obtain

~T2DÊ! init5~T2DÊ!final . ~5.11!

Thus the rectangular part of the phase space is conse
during the compression. The final energy spread of the be
depends only on the amount of compression provided
condition ~5.8! is satisfied.

There is another constraint to the compression rate in
der to avoid beam loss. If the largest excursion of the be
bunch into the barrier pulse isW, the barrier should not
advance by more thanT12W in each revolution period.
From this, we obtain

uṪ2u,
T1
T0

F12S DÊfinal

DEb
D 2G . ~5.12!

This condition indicates that the bunch compression does
work for a full bucket.

A preliminary experiment has been carried out at t
Brookhaven Alternating Gradient Synchrotron@12#, where
an empty gap of about 1ms was created in 1.3 s using a pa
of sinusoidal rf barrier waves. This amounts
uṪ2u;1.631026. Using Eq.~5.8!, the constraint of rf com-
pression rate is

uṪ2,maxu<2.731024,

where we have used the beam parameters of the AGS
an injection kinetic energy of 1.5 GeV, a transition gamm
g
T
58.5, and a 0.2% beam momentum spread. Thus the

dition given in Eq.~5.8! was well satisfied, and, as expecte
no phase space area increase was observed.

A similar bunch beam manipulation for the Recycler
the Fermilab has been contemplated. When antiprotons in
Recycler are cooled to have a small momentum spread,
beam is compressed to accept beam pulses from the ant
ton Accumulator. The maximum compression speed is
portant in preserving the phase space area. Actual exp
mental tests of beam manipulation schemes are neede
achieving a successful operation of avoiding a hollow bea
Since actual scenarios of beam manipulations are mac
dependent, we will not present it here.

VI. CONCLUSION

In conclusion, we analyzed the effect of rf phase and vo
age errors on the particle motion in the barrier rf system.
prove analytically that the dynamics of the barrier wave d
pends only on the total voltage integral in the barrier wa
and is independent of the actual barrier rf wave form. Re
nance strength functions and their associated sum rules
derived. We find that the resonance strength function
creases slowly with the mode number. The tolerance of th
phase and voltage modulation are discussed. We analyz
stability of synchrotron motion for the Fermilab Recycle
The rf phase modulation due to orbit length modulation
sulting from ground vibration can be important. Active com
pensation may be used to compensate for the effect o
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phase modulation. Some constraints of bunch compres
schemes are discussed.
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APPENDIX: SYNCHROTRON HAMILTONIAN
FOR GENERAL BARRIER rf WAVE FORM

From the equations of motion of Eqs.~2.2! and~2.3! , the
general synchrotron Hamiltonian for an arbitrary barrier
wave from is given by

H52
h

2b2E0
~DE!22

E
0

t

eV~t!dt

T0
. ~A1!

Thus the maximum off-energy bucket height can be ea
derived to be

DEb5
S 2b2E0

uh u

U E
T2/2

T2/21T1
eV~t!dt U
T0

D 1/2

, ~A2!
R

ti,
on

-
-
k

,
s

f

ly

whereT1 is the width of the barrier rf wave form. Since th
barrier rf Hamiltonian is time independent, an invariant tor
has a constant Hamiltonian value. TheW parameter for a
torus is defined by

uhu
2b2E0

~DÊ!25

U E
T2/2

T2/21W

eV~t!dt U
T0

. ~A3!

The synchrotron period of a Hamiltonian torus can be writ
as

Ts52
T2
uhuS b2E0

uDÊu
D 14Tc , ~A4!

whereTc is given by

Tc5
b2E0

uhu
E
0

W dt

A~DÊ!22
2b2E0

uhuT0
E
T2/2

T2/21t

eV~t8!dt8

.

~A5!

Clearly, all physical quantities depend essentially
*V(t)dt. Thus the essential physics is independent of
exact shape of the barrier rf wave.
se
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